Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Lancet Infect Dis ; 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2304555

ABSTRACT

BACKGROUND: Bivalent mRNA-based COVID-19 vaccines encoding the ancestral and omicron spike (S) protein were developed as a countermeasure against antigenically distinct SARS-CoV-2 variants. We aimed to assess the (variant-specific) immunogenicity and reactogenicity of mRNA-based bivalent omicron (BA.1) vaccines in individuals who were primed with adenovirus-based or mRNA-based vaccines encoding the ancestral spike protein. METHODS: We analysed results of the direct boost group of the SWITCH ON study, an open-label, multicentre, randomised controlled trial. Health-care workers from four academic hospitals in the Netherlands aged 18-65 years who had completed a primary COVID-19 vaccination regimen and received one booster of an mRNA-based vaccine, given no later than 3 months previously, were eligible. Participants were randomly assigned (1:1) using computer software in block sizes of 16 and 24 to receive an omicron BA.1 bivalent booster straight away (direct boost group) or a bivalent omicron BA.5 booster, postponed for 90 days (postponed boost group), stratified by priming regimen. The BNT162b2 OMI BA.1 boost was given to participants younger than 45 years, and the mRNA-1273.214 boost was given to participants 45 years or older, as per Dutch guidelines. The direct boost group, whose results are presented here, were divided into four subgroups for analysis: (1) Ad26.COV2.S (Johnson & Johnson) prime and BNT162b2 OMI BA.1 (BioNTech-Pfizer) boost (Ad/P), (2) mRNA-based prime and BNT162b2 OMI BA.1 boost (mRNA/P), (3) Ad26.COV2.S prime and mRNA-1273.214 (Moderna) boost (Ad/M), and (4) mRNA-based prime and mRNA-1273.214 boost (mRNA/M). The primary outcome was fold change in S protein S1 subunit-specific IgG antibodies before and 28 days after booster vaccination. The primary outcome and safety were assessed in all participants except those who withdrew, had a SARS-CoV-2 breakthrough infection, or had a missing blood sample at day 0 or day 28. This trial is registered with ClinicalTrials.gov, NCT05471440. FINDINGS: Between Sept 2 and Oct 4, 2022, 219 (50%) of 434 eligible participants were randomly assigned to the direct boost group; 187 participants were included in the primary analyses; exclusions were mainly due to SARS-CoV-2 infection between days 0 and 28. From the 187 included participants, 138 (74%) were female and 49 (26%) were male. 42 (22%) of 187 participants received Ad/P and 44 (24%) mRNA/P (those aged <45 years), and 45 (24%) had received Ad/M and 56 (30%) mRNA/M (those aged ≥45 years). S1-specific binding antibody concentrations increased 7 days after bivalent booster vaccination and remained stable over 28 days in all four subgroups (geometric mean ratio [GMR] between day 0 and day 28 was 1·15 [95% CI 1·12-1·19] for the Ad/P group, 1·17 [1·14-1·20] for the mRNA/P group, 1·20 [1·17-1·23] for the Ad/M group, and 1·16 [1·13-1·19] for the mRNA/M group). We observed no significant difference in the GMR between the Ad/P and mRNA/P groups (p=0·51). The GMR appeared to be higher in the Ad/M group than in the mRNA/M group, but was not significant (p=0·073). Most side-effects were mild to moderate in severity and resolved within 48 h in most individuals. INTERPRETATION: Booster vaccination with mRNA-1273.214 or BNT162b2 OMI BA.1 in adult healthcare workers resulted in a rapid recall of humoral and cellular immune responses independent of the priming regimen. Monitoring of SARS-CoV-2 immunity at the population level, and simultaneously antigenic drift at the virus level, remains crucial to assess the necessity and timing of COVID-19 variant-specific booster vaccinations. FUNDING: The Netherlands Organization for Health Research and Development (ZonMw).

2.
Clin Infect Dis ; 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-2235112

ABSTRACT

The emergence of SARS-CoV-2 variants raised questions regarding the durability of immune responses after homologous or heterologous booster vaccination after Ad26.COV2.S priming. We found that SARS-CoV-2-specific binding antibodies, neutralizing antibodies and T-cells are detectable 5 months after boosting, although waning of antibodies and limited cross-reactivity with Omicron BA.1 was observed.

3.
Clin Microbiol Infect ; 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2230323

ABSTRACT

OBJECTIVES: The potential benefit of convalescent plasma (CP) therapy for coronavirus disease 2019 (COVID-19) is highest when administered early after symptom onset. Our objective was to determine the effectiveness of CP therapy in improving the disease course of COVID-19 among high-risk outpatients. METHODS: A multicentre, double-blind randomized trial was conducted comparing 300 mL of CP with non-CP. Patients were ≥50 years, were symptomatic for <8 days, had confirmed RT-PCR or antigen test result for COVID-19 and had at least one risk factor for severe COVID-19. The primary endpoint was the highest score on a 5-point ordinal scale ranging from fully recovered (score = 1) or not (score = 2) on day 7, over hospital admission (score = 3), intensive care unit admission (score = 4) and death (score = 5) in the 28 days following randomization. Secondary endpoints were hospital admission, symptom duration and viral RNA excretion. RESULTS: After the enrolment of 421 patients and the transfusion in 416 patients, recruitment was discontinued when the countrywide vaccination uptake in those aged >50 years was 80%. Patients had a median age of 60 years, symptoms for 5 days, and 207 of 416 patients received CP therapy. During the 28 day follow-up, 28 patients were hospitalized and two died. The OR for an improved disease severity score with CP was 0.86 (95% credible interval, 0.59-1.22). The OR was 0.58 (95% CI, 0.33-1.02) for patients with ≤5 days of symptoms. The hazard ratio for hospital admission was 0.61 (95% CI, 0.28-1.34). No difference was found in viral RNA excretion or in the duration of symptoms. CONCLUSIONS: In patients with early COVID-19, CP therapy did not improve the 5-point disease severity score.

4.
Front Immunol ; 13: 1067749, 2022.
Article in English | MEDLINE | ID: covidwho-2163027

ABSTRACT

Vaccination against coronavirus disease 2019 (COVID-19) has contributed greatly to providing protection against severe disease, thereby reducing hospital admissions and deaths. Several studies have reported reduction in vaccine effectiveness over time against the Omicron sub-lineages. However, the willingness to receive regular booster doses in the general population is declining. To determine the need for repeated booster vaccinations in healthy individuals and to aid policymakers in future public health interventions for COVID-19, we aim to gain insight into the immunogenicity of the additional bivalent booster vaccination in a representative sample of the healthy Dutch population. The SWITCH ON study was initiated to investigate three main topics: i) immunogenicity of bivalent vaccines after priming with adenovirus- or mRNA-based vaccines, ii) immunological recall responses and reactivity with relevant variants after booster vaccination, and iii) the necessity of booster vaccinations for the healthy population in the future. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05471440.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Health Personnel , Vaccination , Health Status , Public Health
5.
iScience ; 26(1): 105753, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2149916

ABSTRACT

The emergence of novel SARS-CoV-2 variants led to the recommendation of booster vaccinations after Ad26.COV2.S priming. It was previously shown that heterologous booster vaccination induces high antibody levels, but how heterologous boosters affect other functional aspects of the immune response remained unknown. Here, we performed immunological profiling of Ad26.COV2.S-primed individuals before and after homologous or heterologous (mRNA-1273 or BNT162b2) booster. Booster vaccinations increased functional antibodies targeting ancestral SARS-CoV-2 and emerging variants. Especially heterologous booster vaccinations induced high levels of functional antibodies. In contrast, T-cell responses were similar in magnitude following homologous or heterologous booster vaccination and retained cross-reactivity towards variants. Booster vaccination led to a minimal expansion of SARS-CoV-2-specific T-cell clones and no increase in the breadth of the T-cell repertoire. In conclusion, we show that Ad26.COV2.S priming vaccination provided a solid immunological base for heterologous boosting, increasing humoral and cellular responses targeting emerging variants of concern.

6.
PLoS One ; 17(8): e0271807, 2022.
Article in English | MEDLINE | ID: covidwho-1993479

ABSTRACT

INTRODUCTION: The aim of this study was to determine the efficacy of early tocilizumab treatment for hospitalized patients with COVID-19 disease. METHODS: Open-label randomized phase II clinical trial investigating tocilizumab in patients with proven COVID-19 admitted to the general ward and in need of supplemental oxygen. The primary endpoint of the study was 30-day mortality with a prespecified 2-sided significance level of α = 0.10. A post-hoc analysis was performed for a combined endpoint of mechanical ventilation or death at 30 days. Secondary objectives included comparing the duration of hospital stay, ICU admittance and duration of ICU stay and the duration of mechanical ventilation. RESULTS: A total of 354 patients (67% men; median age 66 years) were enrolled of whom 88% received dexamethasone. Thirty-day mortality was 19% (95% CI 14%-26%) in the standard arm versus 12% (95% CI: 8%-18%) in the tocilizumab arm, hazard ratio (HR) = 0.62 (90% CI 0.39-0.98; p = 0.086). 17% of patients were admitted to the ICU in each arm (p = 0.89). The median stay in the ICU was 14 days (IQR 9-28) in the standard arm versus 9 days (IQR 5-14) in the tocilizumab arm (p = 0.014). Mechanical ventilation or death at thirty days was 31% (95% CI 24%-38%) in the standard arm versus 21% (95% CI 16%-28%) in the tocilizumab arm, HR = 0.65 (95% CI 0.42-0.98; p = 0.042). CONCLUSIONS: This randomized phase II study supports efficacy for tocilizumab when given early in the disease course in hospitalized patients who need oxygen support, especially when concomitantly treated with dexamethasone. TRIAL REGISTRATION: https://www.trialregister.nl/trial/8504.


Subject(s)
COVID-19 Drug Treatment , Aged , Antibodies, Monoclonal, Humanized , Dexamethasone/therapeutic use , Female , Humans , Male , Oxygen , Respiration, Artificial , SARS-CoV-2 , Treatment Outcome
7.
N Engl J Med ; 386(10): 951-963, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1642068

ABSTRACT

BACKGROUND: The Ad26.COV2.S vaccine, which was approved as a single-shot immunization regimen, has been shown to be effective against severe coronavirus disease 2019. However, this vaccine induces lower severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-specific antibody levels than those induced by messenger RNA (mRNA)-based vaccines. The immunogenicity and reactogenicity of a homologous or heterologous booster in persons who have received an Ad26.COV2.S priming dose are unclear. METHODS: In this single-blind, multicenter, randomized, controlled trial involving health care workers who had received a priming dose of Ad26.COV2.S vaccine, we assessed immunogenicity and reactogenicity 28 days after a homologous or heterologous booster vaccination. The participants were assigned to receive no booster, an Ad26.COV2.S booster, an mRNA-1273 booster, or a BNT162b2 booster. The primary end point was the level of S-specific binding antibodies, and the secondary end points were the levels of neutralizing antibodies, S-specific T-cell responses, and reactogenicity. A post hoc analysis was performed to compare mRNA-1273 boosting with BNT162b2 boosting. RESULTS: Homologous or heterologous booster vaccination resulted in higher levels of S-specific binding antibodies, neutralizing antibodies, and T-cell responses than a single Ad26.COV2.S vaccination. The increase in binding antibodies was significantly larger with heterologous regimens that included mRNA-based vaccines than with the homologous booster. The mRNA-1273 booster was most immunogenic and was associated with higher reactogenicity than the BNT162b2 and Ad26.COV2.S boosters. Local and systemic reactions were generally mild to moderate in the first 2 days after booster administration. CONCLUSIONS: The Ad26.COV2.S and mRNA boosters had an acceptable safety profile and were immunogenic in health care workers who had received a priming dose of Ad26.COV2.S vaccine. The strongest responses occurred after boosting with mRNA-based vaccines. Boosting with any available vaccine was better than not boosting. (Funded by the Netherlands Organization for Health Research and Development ZonMw; SWITCH ClinicalTrials.gov number, NCT04927936.).


Subject(s)
Ad26COVS1/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunization, Secondary , Immunogenicity, Vaccine , Immunoglobulin G/blood , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , Antibodies, Neutralizing/blood , BNT162 Vaccine/immunology , Female , Humans , Interferon-gamma/blood , Male , Middle Aged , SARS-CoV-2 , Single-Blind Method , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL